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a b s t r a c t

This paper presents analytical solutions of the problem of two-dimensional pressure

wave propagation in a plane straight duct with rigid spring-supported wall panels. The

problems of non-stationary and single-frequency pressure wave propagation in a semi-

infinite duct with a moving piston and with panels locally embedded in the sidewalls

small amplitude oscillations perpendicular to the main duct axis. The system of the duct

with panels acts as a filter. Based on this filter property, which can be described by the

panel parameters, a method of computing the acoustic pressure wave distribution in the

duct is presented. A wave localisation effect in the duct caused by trapped modes has

been found for particular parameters of the sidewall panels.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Problems of acoustic pressure wave propagation in a duct arise in the design of engineering construction. One of the
main issues is the reduction of sound transmission, which can be obtained by the use of acoustic filters composed of special
spring-supported panels. The panels radiate pressure waves into the duct that interact with the incoming plane waves. An
analytical solution of the aforementioned problem is presented to find the pressure dependence as a function of the
coordinate along the duct.

Scientists have been working on related problems for about 40 years, and some interesting results have been achieved.
Doak [1] described the practical applications, theoretical background and the principal features of the theory of acoustic
fields caused by source distributions in ducts of finite length. According to [1], the pressure perturbation induced by a
number of vibrating pistons flush-mounted in the duct walls was found for the case when all pistons vibrate at the same
frequency. Huang [2] showed that in the duct, a substantial amount of sound energy can be transferred to the flexural
waves on a finite wall panel embedded on the lower duct wall. In the manuscript by Bi et al. [3], the study of sound
propagation in a hard-walled circular cylindrical duct lined with non-uniform impedance in the absence of flow has been
performed. The liner was piecewise constant along the duct and was allowed to vary arbitrarily along the circumference. In
the manuscript by Berengier and Roure [4], with the help of modal theory, precise expressions have been obtained for the
acoustic field and the acoustic pressure generated by a real source mounted on a hard-walled waveguide. In the paper by
Lapin [5], the solution of the pressure reduction problem of an acoustic wave propagating along a waveguide with a finite
panel embedded in one of its sidewalls was obtained. The paper by Vovk and Grinchenko [6] presents studies of the wave
propagation problem in a special plane waveguide filled with a liquid. Some parts of this waveguide are hinged elastic
plates. A sound energy transfer coefficient has been found numerically [5,6]. The sound field generated by a fluid-loaded
structural wave travelling along the boundary of a two-dimensional duct with walls that have smoothly varying properties
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has been found in the manuscript by Grant and Lawrie [7]. In the paper by Abramian et al. [8], the problem of localised
trapped modes in an infinite-length plane waveguide has been solved. The waveguide has a mass die oscillating in its wall.
The frequencies and parameters of the waveguide and the die have been determined for the case when standing waves
were initiated in the region of the die and decayed exponentially while moving off this region.

When a sound wave is transmitted along the interior of a duct, the fluid motion is predominantly parallel to the main
duct axis, and the wave motion is almost two-dimensional. For a duct having walls with rigid rectangular cross-sections, a
propagating wave may be assumed to be two-dimensional if the following condition is met: bopc=o, where b is the
greatest duct width and o is the oscillation frequency exiting the duct (as shown in the book by Morse [9]). In the present
paper, the analytical solution of the problem of two-dimensional pressure wave propagation in a plane straight duct with
symmetric rigid spring-supported panels embedded in the sidewalls has been found based on the non-stationary solution
obtained for embedded panels.

As an example, the important problem of single-frequency pressure wave propagation in a semi-infinite duct with
sidewall panels oscillating in the direction perpendicular to the duct axis has been studied. Doak [1] obtained the solution
for the case when sidewall panels performed the prescribed harmonic motion with constant amplitude. In the present
paper, the panel motion is a result of the fluid–structure interaction when the piston in the inlet of the duct generates the
travelling wave. Huang [2] solved the problem of the wave propagation in the duct with one panel embedded on the lower
wall, without considering the distance from the piston that generates the incident wave. The exact solution shown in the
present paper enables the analysis of the influence of that factor on the power transmission coefficient for the case of two
symmetric sidewall panels. A method is presented to find the panel parameters for which pressure wave reduction occurs.
The rest of the paper is divided into five sections:

Section 2. Formulation and setup of the problem. This section presents assumptions and general equations describing
the problem.

Section 3. The general case of non-stationary displacement of the panels under the action of radiation pressure is
considered. The non-stationary solutions for particular initial conditions are obtained for the case when mass–spring
parameters of the panels are the same.

Section 4. For the case of steady-state motion, expressions for the wave pressure and the power transmission coefficient
have been obtained. An analysis of the wave pressure reduction due to the panels is given.

Section 5. To investigate the influence of the panel length, rigidity (natural frequency) and a distance from the panel to a
duct inlet, the power transmission coefficient dependences of the piston oscillation frequency for various duct parameters
have been drawn.

Section 6. Conclusions. Some recommendations on choosing the panel parameters for obtaining a required wave
pressure reduction are made.
2. Formulation and setup of the problem

A plane straight semi-infinite anechoic duct of height H filled with an ideal compressible fluid of density r0 is
considered. A piston at the duct inlet produces oscillations, which generate a plane (two-dimensional) longitudinal wave in
the duct. A section of the rigid walls of the duct between l and L has been replaced by embedded panels (Fig. 1). The panels
are rigid bodies on springs. It is assumed that these panels can only oscillate vertically, that is, uniformly in the y-direction.
The equations of motion for such panels are differential equations for forced oscillations, where the driving force is the
acoustic radiation pressure.

In Cartesian coordinates, the origin of which coincides with the duct inlet, and the x-axis is directed along the lower
wall, the equations describing the given problem are

q2f=qx2þq2f=qy2 � c�2q2f=qt2 ¼ 0;0oxo1;0oyoH
Fig. 1. Duct with embedded panels.
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M1 €u1yþG1u1y ¼ �
1

L� l

Z L

l
Pðx; yÞdx; loxoL; y¼ 0

M2 €u2yþG2u2y ¼
1

L� l

Z L

l
Pðx; yÞdx; loxoL; y¼H

P¼ � r0

qj
qt

(1)

where P is the acoustic pressure, u1y;u2y are panel surface displacement projections along the y-axis, c the acoustic particle
velocity, M1 and M2 are masses of the panels, G1 and G2 are rigidities defining the elastic properties of the panel springs, f
the acoustic potential, and r0 the fluid density.

The potential f must satisfy the following boundary conditions.
The fluid particle velocity in the duct inlet is equal to the velocity of the piston when x¼ 0:
qf=qxjx ¼ 0 ¼ qD=qt (qD=qt is the speed of piston movement).
At the hard duct walls, the normal component of particle velocity must vanish. At the duct surfaces where panels are

embedded, the normal component of particle velocity is equal to the velocity of the panel. As x tends to infinity, a radiation
condition applies: that is, as x-1, the acoustic disturbances must appear to be coming from the source point, not
travelling towards it.

qf=qyjy ¼ 0 ¼

0; 0oxo l

qu1y=qt; loxoL

0; x4L

8><
>:

qf=qyjy ¼ H ¼

0; 0oxo l

�qu2y=qt; loxoL

0; x4L

8><
>:
fjx-1-0 (2)

The effect of fluid loading on the external side of the panel serves to complicate the calculations and is excluded. The last
assumption may need further justification. It is necessary to note that when external fluid is not confined, it exhibits
evanescent waves with an effect of added mass. Therefore, it is not expected to impact the qualitative results sought in this
study. In real applications, however, the external fluid may be confined by a solid wall to form a cavity to prevent noise
breakout. The fluid loading inside the cavity is expected to play a similar role as that of the internal loading, and, for the
special case of a cavity having a depth equal to the main duct height, the total loading on the panel is simply double that of
the present model without external fluid. If the depth is different, the calculations will become rather involved. Therefore,
the present study is based on an idealistic model of no external fluid. Thus, it is the field within the duct that is of interest,
and the exterior region is assumed to be in vacuo.

We have assumed that the panels vibrate with a sufficiently small amplitude that their surfaces practically do not
transcend the y¼ 0 and H boundaries. At such amplitudes, a phenomenon of possible diffraction caused by the panel edges
can be neglected in the solution of the problem. However, the vibrating panels generate a significant radiation pressure in
the duct, which must be taken into account. The boundary discontinuity in the panel locations does not result in additional
pressure that might be caused by the angle between the panel surface and y¼ 0 ðy¼HÞ duct boundaries (for details, see the
book by Mittra and Lee [10]).
3. Non-stationary wave propagation

3.1. General solution of the problem

The general case of non-stationary displacement of the panels under the action of radiation pressure is considered.
Using cos-Fourier transform along the x-axis and the Laplace transform with respect to the time variable in the first
equation of the system (1) and with the relevant boundary conditions in Eq. (2), and considering trivial initial conditions
for t=0, we have

f̂
F

yy � f̂
F
½ðp=cÞ2þl2

� ¼ � pD̂;0oxo1; 0oyoH

f̂
F

yjy ¼ 0 ¼ pû
F
1yðsinlL� sinllÞ=l; f̂

F

yjy ¼ H ¼ � pû
F
2yðsinlL� sinllÞ=l (3)
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where

f̂ ¼
Z 1

0
fðx; y; tÞe�pt dt; f̂

F
¼

2

p

� �0:5 Z 1
0

f̂ðx; y; tÞcoslx dx

p and l are Laplace and Fourier parameters, respectively.
The same designations are used for D̂; ûF

1y; û
F
2y.

The general solution of Eq. (3) has the form:

f̂
F
¼ A cosh gyþB sinh gyþpD̂=g2

g2 ¼ p2=c2þl2 (4)

A and B are determined by the boundary conditions in Eq. (2). Accordingly, the following expressions for the acoustic
potential and the acoustic pressure are obtained (with the help of the last equation from Eq. (1)):

f̂
F
ðp; l; yÞ ¼ � pû

F
1y

cosh gH

g sinh gH
cosh gyþpg�1û

F
1y sinh gyþpD̂=g2 �

pû
F
2y cosh gy

g sinh gH

P̂
F
ðp; l; yÞ ¼ � p2r0

D̂
g2
� û

F
1y

cosh gðy� HÞ

g sinh gH
� û

F
2y

cosh gy

g sinh gH

" #
(5)

Performing an inverse cos-Fourier transform and summing up the residues in the complex plane yields:

P̂ðx; y; pÞ ¼

� r0p2 D̂
c

p
e�px=cþ0:5

Z 1
0

û1yðp; zÞ½F̂1ðjx� zjÞþF̂1ðjxþzjÞ�dzþ0:5

Z 1
0

û2yðp; zÞ½F̂2ðjx� zjÞþF̂2ðjxþzjÞ�dz
� �

(6)

where

F̂1 ¼

ffiffiffiffi
2

p

r Z 1
0

cosh gðy� HÞ

g sinh gH
coslx dl F̂2 ¼

ffiffiffiffi
2

p

r Z 1
0

cosh gy

g sinh gH
coslx dl (7)

If x40, all poles of the integrands in Eq. (7) lie in the upper half-plane, thus making lm equal to

lm ¼7i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2=c2þp2m2=H2

q
;m¼ 0;1;2; . . .

By summing up the residues, one obtains for F̂1 and F̂2 (for mathematical details, see Abrahams [11]):

F̂1 ¼
1

H
�cp�1e�px=cþ

X1
m ¼ 1

ð�1Þm
expð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

c

� �2

þ
pm

H

� �2

x

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p

c

� �2

þ
pm

H

� �2
r cospmðy� HÞ=H

8>><
>>:

9>>=
>>;

F̂2 ¼
1

H
�cp�1e�px=cþ

X1
m ¼ 1

ð�1Þm
expð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

c

� �2

þ
pm

H

� �2

x

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p

c

� �2

þ
pm

H

� �2
r cospmy=H

8>><
>>:

9>>=
>>; (8)

To compute the convolution integral in the expression for the pressure, the behaviour of the panel boundary speed
function in relation to x should be known. If this relationship is known, one can find the average pressure on the panels.
To do this, we have to perform the inverse Laplace transform.

To express the oscillations of the panels as a function of the coordinates, the given boundary conditions (velocities)
of the panels in the region loxoL are considered. Subsequently, the convolution integral for the pressure, Eq. (6), is
evaluated for the following three regions:

0oxo l, loxoL and Loxoþ1, with the help of Eq. (8) according to the technique taken from Abramian et al. [8].
The pressure in the aforementioned regions has the following forms:
For 0oxo l:

P̂ðx; p; yÞ ¼

� r0 �cpD̂e�px=c �
û1yþ û2y

H
½c2ðe�pL=c � e�pl=cÞcosh px=cþ2p2

X1
m ¼ 1

Amðy; pÞg�1
m ðe

�gmL � e�gmlÞcosh gmx�

( )
(9)



ARTICLE IN PRESS

A.K. Abramian / Journal of Sound and Vibration 329 (2010) 994–1006998
For loxoL:

P̂ðx; p; yÞ ¼ � r0 �cpD̂e�px=cþ
û1yþ û2y

H
½c2e�px=cðsinh px=c � sinh pl=cÞþc2ðe�px=c � e�pL=cÞcosh px=c

�

þ
X1

m ¼ 1

Amðy; pÞp
2g�1

m ðsinh gmx� sinh gmlÞ �
X1

m ¼ 1

Amðy; pÞp
2g�1

m cosh gmxðe�gmL � e�gmxÞ�

)
(10)

For Loxo +N:

P̂ðx; p; yÞ ¼

� r0 �cpD̂e�px=cþ
û1y � û2y

H
½c2e�px=cðsinh pL=c � sinh pl=cÞþ

X1
m ¼ 1

Amðy; pÞp
2g�1

m e�gmxðsinh gmL� sinh gmlÞ�

( )
(11)

where, in Eqs. (9–(11), the following designations are introduced:

gmðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2=c2þp2m2=H2

q
;Amðy; pÞ ¼ ð�1Þmg�1

m cos
pm

H
ðy� HÞþcos

pm

H
y

h i
The average of the pressure along the panel length has the following form:

1

L� l

Z L

l
P̂ðx; y; pÞdx; y¼ 0; y¼H (12)

Then, applying the Laplace transform to the second and the third equations of Eq. (1) and using Eq. (12), we obtain the
panel displacement functions û2y and û1y:

û1y ¼ � D̂
K1ðM1p2þG1Þ

ðG1þM1p2þK2ÞðG2þM2p2 � K2ÞþK2
2

u2y ¼ D̂
K1ðM2p2þG2Þ

ðG1þM1p2þK2ÞðG2þM2p2 � K2ÞþK2
2

(13)

where

K1 ¼
c2r0

L� l
ðe�pL=c � e�pl=cÞ

K2 ¼
2r0c2

ðL� lÞH
½ðL� lÞ

� cp�1e�pL=cð2 sinh pl=c � sinh pL=cÞþcp�1e�pl=c sinh pl=c�þ
2r0p2

ðL� lÞH

X1
m ¼ 1

1

g2
m

½ðL� lÞþg�1
m e�gmLð2 sinh gml� sinh gmLÞ

� g�1
m e�gml sinh gml�

Performing an inverse Laplace transform on Eqs. (9)–(11) in a similar way as the cos-Fourier transform and summing up the
residues in the complex plane, one obtains a complete pressure wave distribution in the duct with spring-supported panels.

3.2. Waves caused by the piston kinematic impulse movement

As an example, let us consider the case for the following boundary condition:

qj
qx x ¼ 0 ¼

qD
qt
¼ v0HðtÞ;

				
when the panels’ parameters are similar: G1 ¼ G2 ¼ G; M1 ¼M2 ¼M. Here HðtÞ is the Heaviside function, and v0 is the
piston velocity magnitude. Then D̂ ¼ v0=p2. Substituting this expression into Eq. (11) and applying an inverse Laplace
transform with the help of the convolution theorem, one obtains the following expression for the acoustic pressure when
tZðxþ2LÞ=c and x4L:

P¼ r0cv0 Hðt � x=cÞþ
2

p3O3b2
ð1� eÞ

r0

r
ðsino1ðt � x=cÞ � 0:5 sino1 t �

xþ2L

c

� �
� 0:5 sino1 t �

xþ l� L

c

� �"

þ0:5 sino1 t �
xþ lþL

c

� �
� 0:5 sino1 t �

xþ2l

c

� �
þ

Z t

0
sino1ðt � tÞ�½

X1
m ¼ 1

½ð�1Þmþ1��

Z t

0
ðJ0ðpm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

1 � ðx� LÞ2=c2

q
ÞJ0ðpmðt� t1ÞÞþ J0ðpm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

1 � ðx� lÞ2=c2

q
ÞJ0ðpmðt� t1ÞÞdt1ÞdtÞÞ�;

O¼o1H=pc;b¼ L=H; e¼ l=L;o1 ¼ G=M;G1 ¼ G2 ¼ G;M1 ¼M2 ¼M;m¼ 1;2;3 . . . (14)
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In Eq. (14): o1 is the panel natural frequency, O is the panel non-dimensional natural frequency, r is the panel material
density, b is an axial distance parameter, e is the panel size parameter, and J0ðpmð. . .ÞÞ is the Bessel function of the first kind.
From Eq. (14), it follows that at m=1,3,5y2j+1 (j=0;1,2,3UU), the corresponding modes do not contribute to the overall
wave packet propagating along the duct. As calculations show, at a large time, only the first term value is significant in the
obtained pressure expression. Strictly speaking, though, this presents a large error for those surfaces on which the wave
fronts are located. However, if the problem under investigation is considered as an idealisation of some real process in
which a wave source generates waves not instantly, then the above-mentioned error is not great. By the analogue of the
Saint-Venant principle formulated in the manuscript by Slepian [12], for infinitely long and semi-infinite waveguides, non-
stationary waves generated by the panels are local; they attenuate at a duct height distance and are actually wave packets
with their width approximately equal to the initial perturbation zone width at the beginning of the process. Subsequently,
the wave packet width grows due to dispersion. It has been shown by Slepian [12] that in case of self-balanced and non-
self-balanced loads applied simultaneously to the duct inlet, the self-balanced load can be neglected in solving problems of
non-stationary wave propagation through ducts filled with fluid for Oo1. Thus, as noted by Slepian [12], the Saint-Venant
principle is true for problems of non-stationary wave propagation through ducts filled with fluid with some restrictions.
However, this conclusion cannot be applied for periodical loads. Rigorous substantiations of the above consideration of the
wave packet behaviour for similar problems can be found in the work of Slepian [12].

Fig. 2 presents a diagram of the square of the dimensionless pressure P¼ ðP=rcv0Þ
2 dependences on the panel non-

dimensional natural frequency for b¼ 2, e¼ 0:3, y¼H=5, x¼ 5L, r0=r¼ 0:126 parameters and t¼ 14ðL=cÞ. That time was
chosen to satisfy the condition tZðxþ2LÞ=c (see Eq. (14)). As seen in Fig. 2, at O in the interval O¼ 0:042� 0:128, the non-
dimensional pressure value beyond the panels is Po1. Moreover, there are two values of frequency O when P¼ 0. While
increasing the parameter e to 0.8 (short panel), the frequency band where Po1 is shifting to the right along the O-axis
toward larger frequencies. As calculations show, when time increases to t=100, the number of frequency diapasons at
Po1 also increases. However, the width of each of these diapasons decreases. Simultaneously, the right boundary value O
for the interval where Po1 remains the same. When the parameter b (distance from the duct inlet to the panel) increases,
the number of diapasons where Po1 decreases. When the parameter r0=r (fluid density/panel material density ratio)
increases, the number of diapasons where Po1 increases, as well. Therefore, at a certain selection of panel parameters
and location, it is possible to obtain attenuation of the pressure propagating in a particular location along the duct length.
4. Single-frequency approximation

In this section, the steady-state motion is studied in greater detail. Replacing the parameter p in Eqs. (8)–(10) with þ io,
yields the equation for the acoustic pressure in the duct (o is the angular frequency of the stationary oscillations). In the
case of steady-state motion, one obtains the following for the acoustic pressure field:

If 0oxo l:

Pðx; y; tÞ ¼ r0e�iot iocD0eiox=cþ
u1y � u2y

H
½c2ðeioL=c � eiol=cÞcosox=c

n

�o2
X1

m ¼ 1

½ð�1Þmþ1�a�2
m ðe

�amL � e�amlÞcoshamxcospmy=H�

)
(15)
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If loxoL:

Pðx; y; tÞ ¼ r0e�iot iocD0eiox=cþ
u1y � u2y

H
½c2ieiox=c

ðsinox=c � sinol=cÞþc2ðeiox=c � eioL=cÞcosox=c
n

�
X1

m ¼ 1

½ð�1Þmþ1�o2a�2
m cospmy=H½e�amxðsinhamx� sinhamlÞ � coshamxðe�amL � e�amxÞ��

)
(16)

If Loxo +N:

Pðx; y; tÞ ¼ � r0e�iot iocD0eiox=cþ
u1y � u2y

H
½c2ieiox=c

ðsinoL=c � sinol=cÞ
n

�
X1

m ¼ 1

½ð�1Þmþ1�o2a�2
m e�amxðsinhamL� sinhamlÞcospmy=H�

)
(17)

where am ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2m2=H2 �o2=c2

p
is the exponential coefficient and D0;u1y;u2y are the piston and panel amplitudes,

respectively.
The acoustic pressure field behind the panels x4L, as a function of the frequency can be analysed as follows. From

Eq. (17), one can observe that the pressure field behind the panels can be expressed by the superposition of a radiated two-
dimensional single-frequency wave and of waves generated by the oscillations of the panels. Depending on the value of the
frequency, an infinite set of two-dimensional acoustic waves represented by the sum in Eq. (17) contains different
numbers of waves with decaying amplitudes and periodic waves that propagate along the duct length. By increasing the
frequency, propagating waves occur in pairs in the same way as in a duct without panels.

Next, we discuss the range of frequencies limited by the first natural frequency of the duct. As the calculation shows,
one may neglect the exponentially decaying modes in the expression for the pressure field for x4L because their pressure
can be neglected in comparison with the pressure of the propagating waves at the distance x41.5 L behind the panels. The
diagram in Fig. 3 presents the dependence of the maximum error (Er) of the coordinate selected for finding the pressure
value when the exponentially damped terms in Eq. (17) at the distance x41.5 L are neglected (the maximum is reached at
o¼ 0:9pc=H; L=H¼ 1; l=L¼ 0:8Þ.

The value of the error is the ratio of the contribution of the exponentially decaying modes in the pressure to the
contribution of the propagating waves. Thus, the pressure field behind the panels has the form:

Pðx; y; tÞjx4L ¼ r0 exp½ioðx� ctÞ=c� � ½iocD0 � ic2ðu1y � u2yÞH
�1ðsinoL=c � sinol=cÞ� ¼ r0iocD0 exp½ioðx� ctÞ=c�EðioÞ

(18)

where EðioÞ ¼ 1� 2cðu1y � u2yÞD
�1
0 o�1H�1ðsinoL=c � sinol=cÞ is the complex transfer function of the system.

An expression for the panels displacement functions u2yðioÞ and u1yðioÞ, involved in the transfer function EðioÞ for the
single-frequency approximation, can be found from the Eq. (13) by replacing the parameter p by þ io:

u1y ¼ � D0
K1ðioÞðG1 �M1o2Þ

ðG1 �M1o2þK2ðioÞÞðG2 �M2o2 � K2ðioÞÞþK2
2 ðioÞ

u2y ¼D0
K1ðioÞðG2 �M2o2Þ

ðG1 �M1o2þK2ðioÞÞðG2 �M2o2 � K2ðioÞÞþK2
2 ðioÞ

(19)

where

K1 ¼
c2r0

L� l
ðeioL=c � eiol=cÞ
Fig. 3. Relationship between the error and the coordinate.
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K2 ¼
2r0c2

ðL� lÞH
½ðL� lÞþ ico�1eioL=cð2 sinol=c � sinoL=cÞ � ico�1eiol=c sinol=c�

�
2r0o2

ðL� lÞH

X1
m ¼ 1

1

a2
m

½ðL� lÞþa�1
m e�amLð2 sinhaml� sinhamLÞ � a�1

m e�aml sinhaml� (20)

The expressions for u1y, u2y and for their sum can be analysed as follows.
Assume that the piston frequency satisfies the equation �M1o2þG1 ¼ 0. At this frequency, the natural resonance

frequency of the panel, u1y ¼ 0 and u2y ¼ K1D0=K2. For this case, it is clear that one panel remains at rest while the other one
vibrates with a finite amplitude. If the frequencies of the piston satisfy the following equation: �ðM1þM2Þo2þG2þG1 ¼ 0,
then u1y � u2y ¼ 0, and only the travelling waves will exist in the duct.

For the case when u1yau2y and the panels were made from different materials, the complex transfer function EðioÞ of
the duct can be found after some manipulations of Eq. (18) with the help of Eqs. (19) and (20) and has the form:

EðioÞ ¼ 1þ
2ðo2

2þd �o2
1 � ð1� dÞ �o2

Þ

p3b2
ð1� eÞ2o

r0

r

� �
ðD1C1N � C2

1 Þ

K2þN2
þ i

2ðo2
2þd �o2

1 � ð1� dÞ �o2
Þ

p3b2
ð1� eÞ2o

r0

r

� �
ðNC2

1þKD1C1Þ

K2þN2
(21)

where

C1 ¼ 2 sin
p
2
boð1� eÞcos

p
2
boð1þeÞ;D1 ¼ 2 sin

p
2
boð1� eÞsin

p
2
boð1� eÞ

b¼ L=H; e¼ l=L;o ¼oH=pc;o1 ¼ G1H=pcM1;o2 ¼ G2H=pcM2;

K ¼ ðo2
2 �o

2
Þðo2

1 �o
2
Þþ2

r0

r

� �
ðo2

2 � d �o2
1 � ð1� dÞ �o2Þ

p2bð1� eÞ
A1

A1 ¼ 1�o2
X1

m ¼ 1

1

m2 �o2
þ

o2

pbð1� eÞ
X1

m ¼ 1

1

ðm2 �o2
Þ
1:5
þ

C2
1

pbð1� eÞo
;

X1
m ¼ 1

1

m2 �o2
¼ �

p
2o

ctgpoþ 1

2o2
; d¼

M1

M2
;M1 ¼ rLð1� eÞ

N¼
r0

r

� �
ðo2

2 � d �o2
1 � ð1� dÞ �o2Þ

p2bð1� eÞ
B1;B1 ¼

D1 sinpbeo � C1 cospbo
pboð1� eÞ (22)

o is the non-dimensional frequency of the piston, o1; o2 are the non-dimensional natural frequencies of the panels, and
d is the ratio of the panel masses. The case when d=1 corresponds to the case when both panels were made from the same
material.

Tedious calculations of the value of the complex transfer function EðioÞ and the power transmission coefficient of the
duct in the case when u1yau2y can be simplified for the panels with the same parameters, M1 ¼M2 ¼M and G2 ¼ G1 ¼ G.
EðioÞ for this case can be found by evaluating the function K2ðioÞ. To obtain an expression for K2ðioÞ for practical systems,
it suffices to take into consideration the amplitude of the first mode, m=1. Then the complex transfer function EðioÞ has the
following form:

EðioÞ ¼ 1� 4p�3ðr0=rÞ
C2

1

b2
ð1� eÞ2oðo2

1 �o
2
Þ
þ i4p�3ðr0=rÞ

C1D1

b2
ð1� eÞ2oðo2

1 �o
2
Þ

(23)

where

C1 ¼ 2 sin
p
2
obð1� eÞcos

p
2
obð1þeÞ;D1 ¼ 2 sin

p
2
boð1þeÞsin

p
2
obð1� eÞ (24)

The effect of the pressure wave propagation on the dynamic behaviour of the panels can be analysed by the amplitude–
phase characteristics of the system, that is, the modulus and the phase of the complex transfer function in relation to the
radiation frequency. For different frequencies, the transfer function modulus can be either greater or less than unity,
corresponding respectively to the increase or the decrease in the pressure at the duct inlet. The maximum of the transfer
function modulus follows from: G�Mo2 ¼ 0. This is a resonance condition, implying that the radiation frequency
coincides with the frequency of the panel and that the system has a resonance with an infinite value of jEðioÞj. At
resonance, the phase shift between a radiated plane wave and a wave produced by the panels is equal to p=2, whereas the
displacement and velocity of the panels reach maximal values. It is evident that when there is harmonic radiation with
frequencies close to natural frequencies of the panels, one can expect a sharp growth of the harmonic amplitudes.

Hence, it follows that the range of frequencies of the acoustic radiation waves that are to be suppressed should be
significantly far from the resonance region. This fact must be taken into account in practical applications.

Another interesting phenomenon, that of trapped modes, may occur in the duct. The frequencies for which such a
phenomenon occurs are ones corresponding to standing waves in the duct for x4L. The presence of such waves in the total
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wave packet points to the existence of a mixed natural spectrum of differential operators describing the behaviour of
hydroelastic systems (see Abramian et al. [8]). To find such frequencies, one comes to the following system of equations:

1� SC2
1 ¼ 0

SC1D1 ¼ 0

S¼ 4p�3ðr0=rÞ=b
2
ð1� eÞ2oðo2

1 �o
2
Þ

8><
>: (25)

It follows from the second equation of the system that D1 ¼ 0. Then the corresponding frequency becomes
o j ¼ 2j=bð1þeÞ; j¼ 1;2; . . . The number of these frequencies can be found from the condition ojopc=H; then jo(L+ l)/
2H. To satisfy the first equation of Eq. (25), it is necessary that SC2

1 ¼ 1. The natural frequency corresponding to this case
panel may be obtained by substituting the value o j found from the second equation of Eq. (25) into the first equation.

Additionally, by inserting the following designation of the ratio o1=o j ¼ a, one obtains from the first equation of
Eq. (25) the expression for a:

a2 ¼ 1þ
2bð1þeÞ3

p3j3ð1� eÞ2
r0

r

� �
sin2 pj

1� e
1þe

� �
(26)

Thus, a trapped-mode frequency may exist only at specific values of b and e parameters. In other words, when a trapped-
mode exists, a panel natural frequency can be found for a fixed panel length and distance from the panel to the duct inlet.
The natural frequency of the panel depends on its rigidity and its mass; therefore, to obtain the trapped-mode frequency of
a duct, the aforementioned parameters should be selected.

In that case, one can always find values of parameters G and M that satisfy Eq. (25). As a result of the trapped mode
phenomenon, only transverse standing waves, which vanish exponentially along the duct length, will occur downstream
from the panels. That phenomenon can be explained as follows. All of the fluid mass at the panel moves together with the
panel (i.e., the fluid is ‘‘adapted’’ to the panel). Thus, the fluid effect can be considered as an added mass of the panel.
Hence, the interaction of the fluid and rigid panels with fixed kinematics and a finite number of degrees of freedom can
lead to standing localised mode formation. Conversely, the interaction of the fluid and homogeneous elastic panels with an
infinite number of degrees of freedom cannot lead to the standing localised mode formation as was shown by Abramian
et al. [8]. For the elastic structures, their surface can be considered as an infinite number of wave sources. In contrast to the
case of rigid panels, these sources are non-coherent, and their summarised action cannot produce the well localised waves
(elastic structure and the fluid cannot be matched).

5. Results and discussion

To investigate the influence of the panel length, rigidity (natural frequency) and distance from the panel to a duct inlet,
the power transmission coefficient dependences on the plunger oscillation frequency for various b and e parameters have
been plotted. The power transmission coefficient is defined as F¼ jEðioÞj2. From the dependences given in Figs. 4–6, the
following conclusions can be derived.

For a short panel ðe¼ 0:8; r0=r¼ 0:126Þ located far from the duct inlet ðb¼ 10Þ and the panel natural frequency
o1 ¼ 0:1716, which enables trapped mode existence, the frequency range when Fo1 is as follows: 0:0634ooo0:137
(Fig. 4). At the frequency o ¼ 0:11, the trapped mode effect F¼ 0 is observed. At o40:132, the magnitude FZ1, and the
panel practically does not weaken the propagating wave. At the frequency o ¼ 0:1716, resonance that corresponds to a
sharp F increase is observed. Increasing the panel length (and therefore its mass), i.e., parameter e=0.1, the frequency
range at the same distance from the duct inlet (b=10) when Fo1 is shifted: 0:11ooo0:183 (Fig. 4). Over the rest of the
range up to the first cut-off frequency, one has FZ1. Thus, it can be concluded that if e changes 8 times, it has a small
influence on the range width where Fo1. In the case where the panel rigidity increases such that its natural frequency
does not correspond to the trapped-mode frequency but instead remains close to it ðo1 ¼ 0:2Þ, the width of the frequency
range when Fo1 remains approximately the same (Fig. 4).

The broken line in Fig. 4 shows the minimum corresponding to F¼ 0:085. However, when further increasing the panel
rigidity and its natural frequency up to o1 ¼ 0:8, the behaviour of the dependence FðoÞ changes. As seen from the dotted
curve in Fig. 4, the magnitude F¼ 1 is observed over the whole range of frequencies, excluding a narrow resonance zone.
Therefore, only a special selection of the panel parameters (rigidity and mass) may provide the best filtration and Fo1
values.

When the distance from the panel to the duct inlet decreases to below that of the aforementioned cases, for example, at
b=2, e=0.8, the frequency range when Fo1 becomes broader than for b=10 and e=0.80 in particular: 0.36ooo0.59
(dotted curve in Fig. 5). The natural frequency of the panel o1 ¼ 0:6278 corresponds to the trapped modes effect. When the
length (mass) of the panel is reduced, then the frequency range for Fo1 becomes slightly broader. The continuous curve
in Fig. 5 shows this effect for b=2, e=0.2, when the range within which Fo1 is as follows: 0:6ooo0:84. All figures also
show the frequency ranges where F41.

The case when Fo1 represents that the pressure wave amplitude in the duct behind the panels is always less than the
amplitude of the single-frequency plane waves that propagate in the duct without panels under the same radiation
conditions. It follows that there is a range of frequencies of wave radiation for which the transfer function modulus has a
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Fig. 5. The power transmission coefficient dependence on the non-dimensional frequency for a steel panel. The dotted line is for b¼ 2; e¼ 0:8.

The continuous line is for b¼ 2; e¼ 0:2.

Fig. 4. The power transmission coefficient dependence on the non-dimensional frequency for a steel panel. The continuous line is for b¼ 10; e¼ 0:8, and

the dash–dot line is for b¼ 10; e¼ 0:1, broken line is for b¼ 10; e¼ 0:1; o1 ¼ 0:2, dot line is for b¼ 10; e¼ 0:1; o1 ¼ 0:8.
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minimum value; in other words, there is a frequency range of radiation with optimal filtering. Suppose that the range of
the frequencies of the radiated waves to be suppressed and the geometric dimensions of the duct are given. Then by using
the expression for F, one can find the values of the geometric and dynamic parameters for which the acoustic radiation
pressure at the duct inlet reaches the minimal value.
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Fig. 7. The power transmission coefficient dependence on the non-dimensional frequency for a short rubber panel. The continuous line is for the duct

filled with liquid, and the broken line is for the duct filled with air (b¼ 2; e¼ 0:2).

Fig. 6. The power transmission coefficient dependence on the non-dimensional frequency for rubber and steel panels and a duct filled with water.

The continuous line is for a steel panel, and the broken line is for a rubber panel (b¼ 10; e¼ 0:2).
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The power transmission coefficient can be bigger than 1 for the steady-state motion because two waveguides are
connected: one is of the finite length l, and another is of semi-infinite length (for x4L). The waves transmitted upstream of
the panels in the steady-state motion are the result of a multiple reflection of waves in the following region of the duct
length 0oxoL. Depending on the phase difference between the incident and reflected waves, the wave packet transmitted
downstream can have greater or lesser power than does the incident wave itself. For this reason, for particular values of the
duct parameters, the power transmission coefficient can be greater than 1. In that case, the panels cannot be used for
filtering.
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Diagrams in Figs. 4 and 5 have been constructed for the duct filled with water and for steel panels. Let us investigate the
effect of the panel material on the power transmission coefficient F. When the panel material is, for example, rubber
ðr0=r¼ 0:73Þ, and b¼ 10; e¼ 0:8; then o1 ¼ 0:339.

The diagram in Fig. 6 shows that the frequency range when Fo1 increases by Do ¼ 0:03 in comparison with the case
when the panel material is steel. It should be mentioned that Do is a value related to pc=H; thus, the frequency range
where Fo1 can reach hundreds of hertz. When rubber panels are used, the frequency range where Fo1 for parameters
b¼ 2; e¼ 0:2 increases by Do ¼ 0:034.

When the duct is filled with air and the panel is made of rubber, the parameter r0=r¼ 0:00088. Fig. 7 presents the
relationship between F and o at b¼ 2 and e¼ 0:2 for the cases when the duct is filled with air and with liquid. The width
Fig. 8. The power transmission coefficient dependence on the non-dimensional frequency when the panels have different o1 and o2 ðb¼ 2;

e¼ 0:2; o1 ¼ 0:8; o2 ¼ 0:5; r0=r¼ 0:128; d¼ 2Þ.

Fig. 9. The power transmission coefficient dependence on the non-dimensional frequency when the panels have different o1 and o2 ðb¼ 10;

e¼ 0:8; r0=r¼ 0:73; d¼ 2Þ.
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of the frequency range with Fo1 is Do ¼ 0:0034 for the case when the duct is filled with air. Thus, the absolute range
width can equal several Hertz.

Let us study a case when the panels have different o1 and o2 (different G1;G2;M1;M2). Using Eqs. (21) and (22), a
diagram of FðoÞwas constructed at the similar values of b and e as for the case when o1 and o2 are the same and the duct
is filled with water. Diagrams of FðoÞ for parameters b¼ 2; e¼ 0:2; o1 ¼ 0:8; o2 ¼ 0:5; r0=r¼ 0:126; d¼ 2 are given in
Fig. 8. From the diagrams, it can be seen that several frequency ranges exist with Fo1. One such range has Do ¼ 0:39, and
two others have Do ¼ 0:05; Do ¼ 0:078. The same type of behaviour of FðoÞ has been obtained for
b¼ 10; e¼ 0:8; r0=r¼ 0:73; d¼ 2 (Fig. 9). Analysing these and other diagrams at various panel parameters, one can
conclude that the number of ranges with Fo1 increases when the values of the panel natural frequencies are different.
The case when d=1 shows the same qualitative results.

6. Conclusions

An analytical approach to determine the pressure wave distribution in a plane straight duct with a local mass–spring
behaviour of the sidewalls along which non-stationary and stationary plane waves are propagating has been presented and
calculated. In the low frequency regime, the panels reduce wave amplitudes and therefore act as filters. There is a
frequency range for which the power transmission coefficient reaches a minimal value. Only specific selection of the panel
parameters (rigidity and mass) may provide the best filtration and Fo1 values. At the same time, for a particular distance
from the duct inlet and the length of panels, the power transmission coefficient can be greater than 1. That phenomenon
occurs because of multiple reflections of the waves in the region between the duct inlet and the edge of panels (0oxoL).

A trapped-modes phenomenon occurs at some values of the frequencies that correspond to standing waves in the duct
for x4L. These frequencies can be located above or below the first cut-off frequency of the duct. That phenomenon is
possible only for particular values of the panels and duct parameters. The effect of acoustic filtering in the duct by sidewall
panels is due to the interaction of the waves generated by the piston and those reflected by the panels. Oscillating panels
take their energy from the transmitted wave energy, thus providing a reduction mechanism. From the above given
investigation, it follows that the use of panels for reducing noise and pressure vibration levels of flows in hydraulic ducts
can be very efficient. The exact analytical expressions obtained for the power transmission coefficient may serve as a
foundation for engineering methods for the calculation and design of filters in a number of applications such as machine
building.
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